GHG Emission Report, v1.1

1.21.4

Instructions

This template is intended for reporting greenhouse gas emissions results to ASC. The Feed Standard does not prescribe a specific standard or set of methods for generating GHG values. However, suppliers should be aware that the development of the Farm Standard requirements may necessitate the application of specific methods for feed emissions in the future.

Emissions can be reported in either or both columns using a biophysical or economic allocation approach. Emissions results must be provided according to scope (1-3) as well as by input/activity, being general feed ingredient categories and additional transport and milling emissions that aren't otherwise captured within ingredients. 'Transport and milling' emissions should be at least equal to the sum of scope 1 and scope 2 emissions. If possible, emissions should also be broken down by category (fossil, biogenic, or land use change), facilitated by certain databases and assessment methods. Any uncategorized emissions should be reported as 'Unspecified emissions' (If feed suppliers are unable to determine emissions by category, the total of all emissions can be reported as unspecified).

This template is also expected to reflect the resolution of data that feed suppliers will need to provide to farms to satisfy feed-related emissions modeling for the Farm Standard. Feed suppliers should be ready to adjust the composition of ingredients used in calculations to reflect typical compositions of feeds relevant to each producer, whether that is on a producer-level or a general species-level (e.g. average ASC-compliant salmon feed composition), so that relevant emissions estimates are available to aquaculture producers for their own calculations. **Only enter data in blue cells.**

Table 1. Production year

Year of production (yyyy)

2024

Table 2. GHG emissions by scope

Emissions scope Scope 1

Scope 2 Scope 3 Total

GHG emissions per tonne of ASC compliant feed (kg CO₂-eq/t)

Biophysical (mass) model	Economic model
87.905	87.905
44.176	44.176
2,899	2419.702
3031.23	2551.783

Table 3. GHG emissions by category Emissions category

Fossil emissions Biogenic emissions Land use change emissions Unspecified emissions Total

Biophysical (mass) model	Economic model
1355.954	783.411
60	1.762
1615.276	1766.609
0	0
3031.23	2551.782

Table 4. GHG emission by Input / Activity

Input / Activity
Soy crop inputs
Other crop inputs
Reduction fishery inputs
Fishery by-product inputs
Poultry / livestock inputs
Other feed inputs
Transport and milling
Total

•	Activity		
	Quantity (kg/t)	Biophysical (mass) model	Economic model
١	391.4093902	1518.5889	1856.27
	270.9757804	172.7015	146.8731
	0	0	0
	180.6502112	439.4843	84.6803
	40.1443902	469.7928	33.2967
	116.8202939	102.3603	102.3603
		328.3266	328.3266
	1000.000066	3031.2544	2551.807

GHG Emission Report, v1.1

1.21.4

Instructions

This template is intended for reporting greenhouse gas emissions results to ASC. The Feed Standard does not prescribe a specific standard or set of methods for generating GHG values. However, suppliers should be aware that the development of the Farm Standard requirements may necessitate the application of specific methods for feed emissions in the future.

Emissions can be reported in either or both columns using a biophysical or economic allocation approach. Emissions results must be provided according to scope (1-3) as well as by input/activity, being general feed ingredient categories and additional transport and milling emissions that aren't otherwise captured within ingredients. 'Transport and milling' emissions should be at least equal to the sum of scope 1 and scope 2 emissions. If possible, emissions should also be broken down by category (fossil, biogenic, or land use change), facilitated by certain databases and assessment methods. Any uncategorized emissions should be reported as 'Unspecified emissions' (If feed suppliers are unable to determine emissions by category, the total of all emissions can be reported as unspecified).

This template is also expected to reflect the resolution of data that feed suppliers will need to provide to farms to satisfy feed-related emissions modeling for the Farm Standard. Feed suppliers should be ready to adjust the composition of ingredients used in calculations to reflect typical compositions of feeds relevant to each producer, whether that is on a producer-level or a general species-level (e.g. average ASC-compliant salmon feed composition), so that relevant emissions estimates are available to aquaculture producers for their own calculations. **Only enter data in blue cells.**

Table 1. Production year

Year of production (yyyy)

2024

Table 2. GHG emissions by scope

Emissions scope

Scope 1 Scope 2 Scope 3

Total

GHG emissions per tonne of ASC compliant feed (kg CO₂-eq/t)

Biophysical (mass) model	Economic model
87.898	87.898
44.172	44.172
2,429	1582.122
2561.461	1714.192

Table 3. GHG emissions by category

Emissions category

Fossil emissions Biogenic emissions Land use change emissions Unspecified emissions Total

Biophysical (mass) model	Economic model
1360.079	915.387
23.44	3.033
1177.942	795.773
0	0
2561.461	1714.193

Table 4. GHG emission by Input / Activity

Input / Activity
Soy crop inputs
Other crop inputs
Reduction fishery inputs
Fishery by-product inputs
Poultry / livestock inputs
Other feed inputs
Transport and milling
Total

•	Activity			
Quantity (kg/t)		Biophysical (mass) model	Economic model	
١	100	396.026	517.765	
	370	396.543	490.95	
	0	0	0	
	0	0	0	
	150	1176.843	113.429	
	380	332.9613	332.9613	
		259.1154	259.1154	
	1000	2561.4887	1714.2207	

GHG Emission Report, v1.1

1.21.4

Instructions

This template is intended for reporting greenhouse gas emissions results to ASC. The Feed Standard does not prescribe a specific standard or set of methods for generating GHG values. However, suppliers should be aware that the development of the Farm Standard requirements may necessitate the application of specific methods for feed emissions in the future.

Emissions can be reported in either or both columns using a biophysical or economic allocation approach. Emissions results must be provided according to scope (1-3) as well as by input/activity, being general feed ingredient categories and additional transport and milling emissions that aren't otherwise captured within ingredients. 'Transport and milling' emissions should be at least equal to the sum of scope 1 and scope 2 emissions. If possible, emissions should also be broken down by category (fossil, biogenic, or land use change), facilitated by certain databases and assessment methods. Any uncategorized emissions should be reported as 'Unspecified emissions' (If feed suppliers are unable to determine emissions by category, the total of all emissions can be reported as unspecified).

This template is also expected to reflect the resolution of data that feed suppliers will need to provide to farms to satisfy feed-related emissions modeling for the Farm Standard. Feed suppliers should be ready to adjust the composition of ingredients used in calculations to reflect typical compositions of feeds relevant to each producer, whether that is on a producer-level or a general species-level (e.g. average ASC-compliant salmon feed composition), so that relevant emissions estimates are available to aquaculture producers for their own calculations. **Only enter data in blue cells.**

Table 1. Production year Year of production (yyyy)

2024

Table 2. GHG emissions by scope

Emissions scope

Scope 1 Scope 2

Scope 3

GHG emissions per tonne of ASC compliant feed (kg CO₂-eq/t)

	Economic model	Biophysical (mass) model
87.905		87.905
44.176		44.176
1874.853		2,373
2006 934		2505 338

Table 3. GHG emissions by category Emissions category

Fossil emissions Biogenic emissions Land use change emissions Unspecified emissions Total

Biophysical (mass) model	Economic model
1162.456	859.38
17.25	2.316
1325.631	1145.237
C	0
2505.337	2006.933

Table 4. GHG emission by Input / Activity

Input / Activity
Soy crop inputs
Other crop inputs
Reduction fishery inputs
Fishery by-product inputs
Poultry / livestock inputs
Other feed inputs
Transport and milling
Total

Activity			
Quantity (kg/t)	Biophysical (mass) model	Economic model	
170	664.0923	830.7055	
450	482.281	597.101	
0	0	0	
0	0	0	
110	863.018	83.181	
270	236.5777	236.5777	
	259.3916	259.3916	
1000	2505.3606	2006.9568	

GHG Emission Report, v1.1

1.21.4

Instructions

This template is intended for reporting greenhouse gas emissions results to ASC. The Feed Standard does not prescribe a specific standard or set of methods for generating GHG values. $However, suppliers should \ be \ aware \ that \ the \ development \ of \ the \ Farm \ Standard \ requirements$ may necessitate the application of specific methods for feed emissions in the future.

Emissions can be reported in either or both columns using a biophysical or economic allocation approach. Emissions results must be provided according to scope (1-3) as well as by input/activity, being general feed ingredient categories and additional transport and milling emissions that aren't otherwise captured within ingredients. 'Transport and milling' emissions should be at least equal to the sum of scope 1 and scope 2 emissions. If possible, emissions should also be broken down by category (fossil, biogenic, or land use change), facilitated by certain databases and assessment methods. Any uncategorized emissions should be reported as 'Unspecified emissions' (If feed suppliers are unable to determine emissions by category, the total of all emissions can be reported as unspecified).

This template is also expected to reflect the resolution of data that feed suppliers will need to provide to farms to satisfy feed-related emissions modeling for the Farm Standard. Feed suppliers should be ready to adjust the composition of ingredients used in calculations to reflect typical compositions of feeds relevant to each producer, whether that is on a producerlevel or a general species-level (e.g. average ASC-compliant salmon feed composition), so that relevant emissions estimates are available to aquaculture producers for their own calculations. Only enter data in blue cells.

Table 1. Production year

Year of production (yyyy)

2024

Table 2. GHG emissions by scope Emissions scope

Scope 1 Scope 2

Scope 3 Total

GHG emissions per tonne of ASC compliant feed (kg CO₂-eq/t)

	Economic model	Biophysical (mass) model
80.112		80.112
40.259		40.259
578.448	.1	3,379
698.819	1	3499.647

Table 3. GHG emissions by category

Emissions category

Fossil emissions Biogenic emissions Land use change emissions Unspecified emissions Total

Biophysical (mass) model	Economic model
2144.267	819.539
179.322	3.423
1176.058	875.857
0	0
3499.647	1698.819

Table 4. GHG emission by Input /

Input / Activity Sov crop inputs Other crop inputs Reduction fishery inputs Fishery by-product inputs Poultry / livestock inputs Other feed inputs Transport and milling Total

/ Activity			
	Quantity (kg/t)	Biophysical (mass) model	Economic model
	160	645.4096	892.0581
	170	115.1728	104.476
	0	0	0
	340	827.382	159.4647
	140	1481.4479	112.5847
	190	166.4808	166.4808
		263.7945	263.7945
	1000	3499.6876	1698.8588